Vaccine value profile for *Klebsiella pneumoniae*

Ziyaad Dangor a,*, Nicole Benson b, James A. Berkley c,d, Julia Bielicki e,f, Merijn W. Bijsma g,h, Jonathan Broad i, Ed T. Buurman j, Alan Cross k, Erin M. Duffy l, Kathryn E. Holt m, Pui-Ying Iroh Tam n, Mark Jit o, Konstantinos Karampatsas e, Michael Katwere p, Gaurav Kwatra q,r,a, Ramanan Laxminarayan a, Kirsty Le Doare f,g,h, Robert Mboizi o, Francesca Micoli i, Catrin E. Moore e, Eve Nakabembe w, Nichola R. Naylor i,j, Seamus O’Brien y, Courtney Olwagen a, Denasha Reddy a Charlene Rodrigues b,z,aa, David A. Rosen ab, Manish Sadarangani ac,ad, Padmini Srikantiah b, Sharon M. Tennant k, Mateusz Hasso-Agopsowicz ae, Shabir A. Madhi a

a South Africa Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
b Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
c KEMRU/Welcomes Trust Research Programme, Kilifi, Kenya
d Centre for Tropical Medicine & Global Health, University of Oxford, UK
e Centre for Neonatal and Paediatric Infection, St George’s, University of London, UK
f Paediatric Research Centre (PRC), University of Basel Children’s Hospital, Basel, Switzerland

g Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef, Amsterdam, the Netherlands
h Amsterdam UMC, University of Amsterdam, Department of Pediatrics, Amsterdam Neuroscience, Meibergdreef, Amsterdam, the Netherlands
i Croydon University Hospital, London, UK
j CAR-B, Boston University, Boston, MA 02215, USA
k Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA

l Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
m Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
n Paediatrics and Child Health Research Group, Malawi-Liverpool Wellcome Programme, Blantyre, Malawi
o Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
p Makerere University-Johns Hopkins University Research Collaboration, Kampala, Uganda

q Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
r Department of Clinical Microbiology, Christian Medical College, Vellore, India

s One Health Trust, Bangalore; Princeton University, Princeton, NJ, USA
t UK Health Security Agency, Porton Down, UK
u World Health Organization, Geneva, Switzerland
v GSK Vaccines Institute for Global Health, Italy
w Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, Upper Mulago Hill Road, P.O. Box 7072 Kampala, Uganda
x Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London, UK
y Global Antibiotic Research & Development Partnership (GARDP), Geneva, Switzerland
z Dept of Paediatrics, Imperial College Healthcare NHS Trust, London, UK
aa Pathogen Genomics Programme, UK Health Security Agency, London, UK

ab Department of Pediatrics and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
ac Vaccine Evaluation Center, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
ad Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
ae Department of Immunisation, Vaccines & Biologicals, World Health Organisation, Geneva, Switzerland

*Corresponding author.
E-mail address: Ziyaad.Dangor@wits.ac.za (Z. Dangor).

https://doi.org/10.1016/j.vaccine.2024.02.072

0264-410X/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. The global public health need for a vaccine

Globally in 2019, *Klebsiella pneumoniae* (K. pneumoniae) was ranked as the fourth highest cause of infection-related deaths across all-age groups, with an estimated 790,000 (95% Uncertainty Interval [UI]: 682,000–1,010,000) deaths [1]. Furthermore, K. pneumoniae was the second leading cause of global deaths attributable to antimicrobial resistant (AMR) pathogens, and leading (19.9%; 95% UI: 15.1–25.4) cause in sub-Saharan Africa [2]. There are two priority groups in whom the burden of *K. pneumoniae* is most concerning and thus the focus of this Vaccine Value Profile (VVP); namely: (i) neonates and young infants, and (ii) vulnerable children, adolescents and adult populations at risk of *K. pneumoniae* disease. Table 1 summarizes the key epidemiological features of invasive *K. pneumoniae* disease.

(i) Neonates and infants: *K. pneumoniae* is one of the most common causes of multidrug resistant hospital-acquired infections and the leading etiology of neonatal sepsis, globally [2–4]. Overall, given the slower decline in global neonatal mortality than in older children [5], the ongoing healthcare resource limitations in many regions, the lack of new antimicrobial agents in the pipeline and increasing AMR, a maternal vaccine against *K. pneumoniae* is a highly attractive prospect. A safe, effective, and affordable vaccine delivered during pregnancy, which results in transplacental transfer of protective antibody could reduce the risk of invasive *K. pneumoniae* disease morbidity and mortality in young infants, and also reduce antimicrobial usage. Furthermore, vaccination against *K. pneumoniae* could contain the spread of AMR bacteria and reduce the costs of hospitalization to families and the health system. Vaccinating pregnant women could protect against both early-onset sepsis (disease occurring within the first 72 h of life) which could be a consequence of *K. pneumoniae* acquisition in utero, during delivery from the mother’s vaginal microbiota or from environmental sources. Furthermore, infants could also potentially be protected beyond 72 h of age (i.e., late-onset sepsis) which could be due to community or hospital-acquired infections. Modelling suggests that a *K. pneumoniae* vaccine targeted at pregnant women, could avert approximately 80,000 deaths and 400,000 neonatal sepsis cases, predominantly in sub-Saharan Africa and South Asia [4].

(ii) Vulnerable populations: *K. pneumoniae*, particularly multidrug resistant hospital-acquired strains have a high mortality in at-risk vulnerable children, adolescents and adult populations, including but not exclusive to those with/ requiring:

- severe acute malnutrition
- anticipated prolonged hospital stay,
- invasive intensive care management,
- abdominal and/or urinary surgical procedures,
- at risk of surgical site or device-associated infections,
- chronic obstructive airway disease,
- primary or secondary immunodeficiency,
- hematological or other malignancy,
- long-term acute care facility admission, or
- adults over 65 years of age.

The VVP does not address the “Hypervirulent *K. pneumoniae*” strain which predominantly occurs in healthy adults from Southeast Asia and typically presents as community-acquired pyogenic liver abscess [6].

1.4. Current methods of surveillance, diagnosis, prevention, and treatment

1.4.1. Surveillance

K. pneumoniae is commonly included in hospital-based surveillance for AMR and/or healthcare associated infections, and human blood and urine isolates are included in the WHO Global Antimicrobial Resistance (AMR) and Use Surveillance System (GLASS) [71]. *K. pneumoniae* is not typically included in formal surveillance programs in community settings, nor in non-human settings. Examples of formal AMR surveillance programs that include *K. pneumoniae* are:

- European CDC Central Asian and European Surveillance of Antimicrobial Resistance; CAESAR; https://www.who.
1.1 Epidemiology

Reservoir

- As a commensal bacterium, *K. pneumoniae* causes opportunistic human infections. *K. pneumoniae* colonization is most frequent in the gastrointestinal tract (5–38 % of stool samples), but may also colonize the nasopharynx, genital tract, vagina and skin of humans [7-10].
- Gastrointestinal *K. pneumoniae* colonization is a risk factor for invasive disease, with carriers four times more likely to develop invasive disease compared with non-carriers [8,11]. Human carriage rates are also higher in hospitalized patients (77 % of stool samples), primarily thought to be related to the effect of use of antibiotics on the gastrointestinal microbiome [7,12].
- The carriage rates of *K. pneumoniae* may vary in ethnic groups from different settings, such as *K. pneumoniae* being identified from stool samples of 19 % of healthy Chinese adults in Japan compared with 88 % of healthy Chinese in Malaysia [13].
- *K. pneumoniae* is also ubiquitous in the environment, having been found in several ecological niches such as soil, water, plants, different animals (insects, birds, reptiles and the intestine of mammals) and food [14-16].
- There is a paucity of information on the specific niches. Further understanding of the different reservoirs and transmission of *K. pneumoniae* from wider environmental and animal niches is needed globally.

At-risk populations

- *K. pneumoniae* has the highest incidence in the extremes of life, predominantly affecting neonates and the elderly.
- *K. pneumoniae* is especially important as a hospital-acquired pathogen in neonates, in all age-groups admitted to high dependency and intensive care facilities (which includes premature, small for gestational age, and sick term infants), and in individuals with intra-vascular devices or on mechanical ventilation support.
- In a multi-center study across seven sub-Saharan African and South Asian countries between 2015 and 2017, *K. pneumoniae* was reported as the leading cause (24.9 %) of neonatal sepsis. Overall, more than 80 % of Gram-negative bacilli were resistant to third generation cephalosporins and 13-15 % resistant to carbapenems [17].
- Early-onset neonatal sepsis due to *K. pneumoniae* is often rapidly fatal and may be difficult to identify due to lack of appropriate blood sampling or microbiology infrastructure. Furthermore, *K. pneumoniae* is even more difficult to isolate from newborns born prematurely or of low birth weight, or following birth asphyxia [18,19].
- Epidemiological surveillance studies often do not stratify invasive *K. pneumoniae* based on whether infection was community acquired or hospital associated [20].

Mortality

- Deaths attributable to AMR are highest in sub-Saharan Africa, likely because of a high burden of infections and inadequate laboratory and clinical care resources to effectively diagnose and treat cases. Consequently, a large potential burden of invasive disease due to AMR pathogens, including *K. pneumoniae*, are undetected in routine practice in resource constrained settings.
- Globally, in 2019, carbapenem and third-generation cephalosporin-resistant *K. pneumoniae* were estimated to have caused approximately 50,000 deaths each [2]. Resistance to carbapenem is more frequent in early-onset sepsis than late-onset neonatal sepsis [17].
- A global neonatal sepsis observational cohort study (NeoOBS) examined sepsis, antimicrobial usage and microbiology in 11 countries from 2018 to 2020 [19]. Approximately 37 % of the Gram-negative organisms were *K. pneumoniae*, mostly resistant to WHO-recommended regimens (ampicillin/cillin + gentamicin) and to carbapenems (33 %). The 28-day case fatality risk for invasive *K. pneumoniae* disease was 21 %.
- Through minimally invasive tissue sampling (post-mortem needle biopsies) to determine causes of death on deceased children as part of a global neonatal sepsis observational cohort study (NeoOBS) examined sepsis, antimicrobial usage and microbiology in 11 countries [20].
- In survivors of invasive Group B Streptococcal (GBS) disease during early infancy, moderate or severe NDI was predicted in 2020 to occur in 37,100 (14,600–96,200) children [21].
- There is limited data available on the seasonality of *K. pneumoniae* infections from LMICs. There is an increased risk of NDI in both high-income countries (HICs; 4.6 %) and LMICs (38.1 %) in survivors of invasive GBS disease compared with healthy controls (2.5 and 21.7 %, respectively) [30,31].
- Sequelae of sepsis on cognition resulting in functional disability is also increasingly being recognized in adults. With each patient serving as his or her own control, severe sepsis was associated with a 3.3-fold (95 %CI 1.5–7.3) progression to moderate/severe cognitive impairment from 6.1 % to 16.7 %, in the US [32].

Morbidity

- There is no data specifically detailing the rate of occurrence or severity of neurodevelopmental impairment (NDI) for patients following invasive *K. pneumoniae* disease.
- Most data on NDI stem from cohort studies evaluating the morbidity impacts of neonatal sepsis. In a meta-analysis of 14 studies, blood culture-proven neonatal sepsis in very preterm infants was associated with greater than three-fold increase in substantial risk of NDI (including cerebral palsy and neurosensory deficits) compared with neonates who did not develop sepsis [23].
- Cohort studies in the US, Europe and Asia have also identified an association between early or late-onset neonatal sepsis and NDI, but with smaller effect sizes and variably affected cognition and motor development [24-26].
- There is a paucity of data on the association between neonatal sepsis and NDI from low- and middle-income settings. Studies from Brazil reported that prevalence of NDI was greater in very low birth-weight infants with sepsis than non-affected infants, mostly for neuromotor development (33.7 % vs. 9.3 %; aOR 2.5, 95 %CI 1.2–5.1) at 12 months of age for early or late onset sepsis [27,28].
- In survivors of invasive Group B Streptococcal (GBS) disease during early infancy, moderate or severe NDI was predicted in 2020 to occur in 37,100 (14,600–96,200) children [29]. There is an increased risk of NDI in both high-income countries (HICs; 4.6 %) and LMICs (38.1 %) in survivors of invasive GBS disease compared with healthy controls (2.5 and 21.7 %, respectively) [30,31].
- There is limited data available on the seasonality of *K. pneumoniae* infections from LMICs.
- In adults, community acquired infection caused by a hypervirulent *K. pneumoniae* strain was most frequently reported in South-East Asia [32].

Geographical and seasonal distribution

- The greatest burden of morbidity and mortality from *K. pneumoniae* infections is in LMICs, particularly in sub-Saharan Africa and South Asia [1]. Nevertheless, there remain critical data gaps on the burden and sequelae of invasive *K. pneumoniae* disease in LMICs.
- Studies from HICs suggest that *K. pneumoniae* bloodstream infection incidence rates, including among neonates, are highest during the warmest months of the year [33–36]. There is limited data available on the seasonality of *K. pneumoniae* infections from LMICs.
- In adults, community acquired infection caused by a hypervirulent *K. pneumoniae* strain was most frequently reported in South-East Asia [6].

Gender distribution

- Overall, there is no difference in the sex distribution of deaths attributed to *K. pneumoniae* [1].
- In a neonate intensive care unit in Pakistan, male sex was associated with a 9.2 (95 % CI 1.3–66) higher adjusted odds of *K. pneumoniae* sepsis and mortality [36].

Socio-economic status vulnerability(ies) (equity/wealth quintile)

- *K. pneumoniae* contributed to a greater proportion of deaths in sub-Saharan Africa than HICs [2].

(continued on next page)
Table 1 (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Summary and evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>• In resource constrained settings, neonatal sepsis is managed with limited understanding and confirmation of the bacterial cause with extremely low rates of bacterial culture confirmation, due to lack of a culture to take samples together with a lack of accessibility to blood culture equipment and high-quality laboratory culture facilities. The involvement of certain key bacterial species and resistant pathogens is provided by the microbiological culture results available due to neonatal clinical research studies and from neonatal unit surveillance microbiology [17,19].</td>
<td></td>
</tr>
</tbody>
</table>

Natural immunity

• Innate immune responses against K. pneumoniae infection mainly involve the complement system and phagocytosis [37,38].
• Cellular and humoral adaptive immune responses to K. pneumoniae have been described in animal model and human studies [39]. Cell-mediated and humoral immunity play a protective role against K. pneumoniae disease [39].
• The capsular polysaccharide (CPS)-mediated resistance to phagocytosis can be overcome by opsonisation using a specific antibody combined with serum complement, and possibly through surface phagocytosis (non-antibody-mediated phagocytosis by adherent leukocytes) [37,40].

Pathogenic types, strains, and serotypes

• CPS, designated as the K-antigen, is a key virulence factor of K. pneumoniae which promotes resistance to phagocytosis by macrophages, neutrophils and monocytes [37,38,41,42].
• Nearly 80 immunologically distinct K-antigen serotypes have been identified by sero-immuno assays, and a further 82 are proposed on the basis of unique gene content in the CPS biosynthesis locus [43,44].
• Blood isolates show a similar K-antigen distribution to those found colonizing the human gut [45].
• In a multi-center study on neonatal sepsis in seven LMICs, 13 of the top-20 most common CPS loci identified (KL2, KL15, KL23, KL24, KL25, KL39, KL54, KL62, KL102, KL112, KL117, KL122) were also amongst the top-20 CPS loci identified from bloodstream infections from adults in Asian countries [17,46].
• The most common lipopolysaccharide (LPS) O antigen serotypes are O1, O2, O3, O4 and O5 [44,47]. O1 to O4 serotypes accounted for 97% of all neonatal sepsis cases in a multi-centered study in LMICs, as well as 93% of bloodstream isolates from adults in Asian countries [17,43]. Serotypes O1, O2, O3, and O5 accounted for 90.1% of invasive K. pneumoniae strains across all age groups in a multi-country collection across Asia, Africa, Europe and the Americas [47]. Notably, there are subtypes within O2 and O3, and it is not clear whether antibodies generated against particular subtypes would cross-react with other subtypes.
• Other species in the K. pneumoniae complex, primarily K. quasipneumoniae and K. varicola, may also cause neonatal sepsis [44,48,49].
• Hypervirulent K. pneumoniae, most commonly associated with K1, K2 and K5 serotypes, are characterized by hypermucosity, enhanced siderophore production, and lethality in a mouse pneumonia model. Hypervirulent K. pneumoniae are uncommon in hospital-acquired infections in neonates and immunocompromised adults [6].
• Hundreds of discrete K. pneumoniae sublineages are defined by core-genome variation [50]. Within most sublineages, CPS loci are not stable and can be exchanged via recombination [51].

1.2 Potential indirect impact

Anti-microbial resistance (AMR) threat

• K. pneumoniae is considered to be a critical-priority AMR pathogen threat by WHO [52], being one of the AMR pathogens with the highest mortality due to invasive disease [2]. The rapid emergence of AMR, particularly extended-spectrum beta-lactamase (ESBL) and carbapenemase-producing strains limits therapeutic options, leading to increased mortality [53].
• K. pneumoniae are intrinsically resistant to ampicillin due to the presence of the SHV-1 penicillinase in their chromosome [14].
• Most acquired resistance in K. pneumoniae results from the acquisition of AMR genes via horizontal gene transfer, aided by plasmids and other mobile genetic elements [14]. Hundreds of mobile AMR genes have been found in K. pneumoniae. Many AMR genes were first identified in Klebsiella, before their dispersal amongst other clinically relevant Gram negative organisms [14].
• Historically there was an inverse relationship between the presence of AMR genes and hypervirulence genes. There are fewer AMR genes in the more invasive Klebsiella strains compared with isolates that mainly cause healthcare associated infections. Nevertheless, a carbapenem-resistant strain of hypervirulent K. pneumoniae was identified in 2015 in Asia [54], and there has been a convergence of multi-drug resistant and hypervirulent K. pneumoniae with global spread [53].

Epidemic and outbreak potential

• K. pneumoniae is a common cause of outbreaks within hospital settings, including neonatal units [55,56].
• To date, there is no indication that K. pneumoniae can cause outbreaks in community settings.

Transmission route/potential

• Transmission of K. pneumoniae is common within hospitals and has been associated with persistence in a range of contaminated sources including hospital plumbing, medical devices, and reagents. Colonization studies suggest that transmission often results in asymptomatic carriage, progressing to clinical infection in a fraction of colonized individuals [8,57].
• Evidence for transmission of K. pneumoniae from environmental or animal reservoirs to humans is scarce [58–63]. Nevertheless, there limited sporadic transmission has been reported between a small number of domestic animals and humans [63–65].

Acquired/herd immunity

• The CPS and LPS induce humoral immune responses through a T-cell independent mechanism, without inducing the formation of memory cells [37].
• There is a paucity of studies on the role of cell-mediated immunity against K. pneumoniae [37].
• There is no evidence whether infection or vaccine induced immunity would confer indirect protection to others, or herd immunity.

Co-associated mortality

• Case-fatal risk of invasive K. pneumoniae disease is higher in adults with comorbidities such as heart disease (51%), diabetes (31%), chronic lung disease (28%), chronic kidney disease (26%), and liver disease (15%) [66].
• It has been proposed that K. pneumoniae expressing polyketide synthase (also known as colibacin) is associated with colorectal cancer [67].

1.3 Economic burden

Health facility costs/out of pocket costs/ productivity costs

• The estimated annual economic burden of neonatal sepsis and its sequelae is estimated at $469 billion for sub-Saharan Africa alone, although the estimates are based on limited data collected prior to the recent shift towards healthcare facility-based deliveries and improved neonatal care for preterm births in LMICs [68].
• Reducing associated neonatal deaths is likely to save many ‘working life years’.
• To understand the economic value of a prophylactic intervention such as a vaccine for K. pneumoniae, requires a greater understanding of the economic burden of disease at the population, hospital, community and patient/family level. There needs to be clear data demonstrating the attributable and associated mortality, morbidity and related healthcare and socioeconomic cost related to a target pathogen before the impact of the intervention can be assessed. The context for such an evaluation will be informed by the target population and the outcomes that are anticipated. Reduction in mortality and morbidity will have different health economic impacts compared to more general AMR outcomes for example.

(continued on next page)
Continued

1.4.2. Diagnosis

K. pneumoniae are Gram-negative, lactose fermenting aerobic coliforms which can be readily cultured in standard agar, e.g., blood agar, nutrient agar or MacConkey agar. Morphologically, *K. pneumoniae* colonies appear as ~2 mm circular, mucoid, and translucent/opaque. The string test can be performed on the colonies that demonstrates a hypermucoviscous phenotype, a recognized virulence feature. The diagnosis of invasive *K. pneumoniae* disease requires microbiology laboratory diagnostic methods applied to sterile samples including blood, diagnosis of invasive disease requires microbiology laboratory diagnostic methods applied to sterile samples including blood, peritoneum, synovium or abscesses.

On identification of a colony that is morphologically representative of *K. pneumoniae*, further biochemical testing would demonstrate that *K. pneumoniae* are lactose fermenting, H$_2$S (hydrogen sulphide)-negative and indole-negative, has positive Voges-Proskauer (VP) reaction, is capable of growth in KCN (potassium cyanide), uses citrate as a sole carbon source, and is incapable of growth below 10 °C. In middle- and high-income settings, matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is used for bacterial identification and speciation. MALDI-TOF can adequately identify many *Klebsiella* species if the full spectra are used to distinguish the many closely-related species within the *K. pneumoniae* species complex, these are not routinely included in all MALDI-TOF databases so inaccurate species attribution can occur [73].

When culture methods are needed for growth, molecular methods can be used to detect *K. pneumoniae*, including polymerase chain reaction (PCR). Specific PCR are available in some settings to perform on sterile site samples to identify the presence or absence of *K. pneumoniae*, but with no information provided to determine antibiotic susceptibility. Broad-range PCR using the 16S ribosomal subunit can be used to detect the presence of bacteria including *K. pneumoniae* in a sample. By sequencing the PCR products, it is possible to identify the genus and sometimes species of the *Klebsiella* spp. Real-time PCR can be used to detect *K. pneumoniae* in environmental and stool samples, but is not recommended for diagnostic use [74,75].

1.4.3. Prevention

K. pneumoniae are ubiquitous in the environment, found in soil, plants, animals and humans. The human microbiome has identified *K. pneumoniae* in the gut, skin, mouth and vagina [14,76]. Therefore, hand hygiene is important in the context of prevention of transmission of *K. pneumoniae* from one person to another, particularly in healthcare settings to prevent hospital-acquired infections. Environmental cleaning to prevent hospitalized patients acquiring *K. pneumoniae* is also important. Many infections that occur in hospitals develop from strains already present in the host’s own microbiome, for which primary prevention strategies to prevent progression to invasive disease is less well defined [8]. One strategy used in high-dependency and hematological wards is screening for colonization on admission, to help identify at-risk patients and avoid inappropriate therapy should infections develop with resistant organisms. Antimicrobial stewardship interventions can prevent the development of AMR in colonizing *K. pneumoniae* and other resident flora, which can be transferred between different *Enterobacteriaceae* resulting in invasive disease with resistant or multi-drug resistant *K. pneumoniae*, which may be more difficult to treat.

1.4.4. Treatment

K. pneumoniae can be treated with a wide range of antibiotics but are intrinsically resistant to ampicillin, due to presence of SHV-1 penicillinase on their chromosome. Final antibiotic treatment regimens should be determined based on prevailing antimicrobial susceptibility profiles, preferably from the relevant setting.

For *K. pneumoniae* that are ESBL-producing, most cephalosporins and monobactams such as aztreonam are ineffective. Carbapenems are the drug class of choice, with meropenem being preferred to treat severe sepsis and central nervous system infection [77]. Ertapenem can be used in less severe infections and for adults or adolescent patients requiring outpatient antibiotic therapy.

K. pneumoniae that produce carbapenem-hydrolyzing beta-lactamas are further categorized into serine carbapenemases (KPC) and metallo-beta-lactamases (NDM, IMP, VIM). Treatment options are far more limited and include colistin, tigecycline, and aminoglycosides, which can have significant side effects. Newer beta-lactam beta-lactamase inhibitor combinations such as ceftazidime/avibactam can be used in adults but may need to be combined with aztreonam [78], but the evidence, availability and cost are limitations to treating infections in children and neonates, especially in LMICs.

1.5. Summary of research gaps in epidemiology, potential indirect public health impact and economic burden

- The majority of existing surveillance on the burden of invasive *K. pneumoniae* disease is performed via HIC networks and mainly in adults. More structured surveillance on the overall burden of *K. pneumoniae* disease is required from LMICs, which would require improving diagnostic laboratories at sentinel sites. A major challenge is the low blood culture sensitivity that hampers the ability to confirm *K. pneumoniae*, particularly in preterm neonates. The surveillance should include data on the geographic and seasonal burden...
of *K. pneumoniae* invasive disease. Incidence data will be required by national ministries of health, GAVI, and other groups to support the investment in vaccines. Furthermore, the surveillance should work towards delineating high-risk populations which could assist in determining who to target for prophylactic strategies such as vaccines and provide epidemiological data to assist in vaccine design.

- Ongoing (possibly enhanced) surveillance, including clinical and molecular epidemiology (including relevant typing) will be required before, preferably well in advance of, and after the introduction of a new vaccine to fully evaluate impact.
- The prevalence and persistence of *K. pneumoniae* colonization in different body sites (gut, skin, nasopharynx), and the role of the microbiome as a source of infection, needs to be more clearly defined.
- Further understanding of the different reservoirs and transmission from wider environmental and animal niches should be explored.
- There is a need for new and improved antimicrobials for treatment of AMR strains, including drugs that could be formulated for use in children.
- Better understanding of immune protection against *K. pneumoniae* is required, including role of systemic humoral and cell-mediated immunity and tissue immune responses. Identifying serological markers associated with risk reduction of invasive *K. pneumoniae* disease would contribute to vaccine development by providing proof of concept for candidate antigens.
- Transfer of *K. pneumoniae* antigen-specific antibody from pregnant women to the fetus and newborn, including transplacental transfer and via breast milk, needs to be evaluated.
- The impact of any maternal vaccine on the pregnant women’s microbiome and future risk of invasive *K. pneumoniae* disease would also warrant investigation.
- A full economic evaluation is needed to consider vaccination of the mother or newborn (for a vaccine to be administered in pregnancy), or the individual (for adult administered vaccines), including healthcare burden, accounting for specific costs related to AMR infections, and societal costs.

2. Potential target populations and delivery strategies

There are currently two main target populations for *K. pneumoniae* vaccines, and the delivery strategies differ (Table 2). The first is pregnant women targeted in the second or third trimester of pregnancy to enhance the placental transfer of protective antibodies to the fetus thereby protecting young infants in the vulnerable neonatal period and first few months of life. Formative research for a vaccine targeted at pregnant women to protect neonates in LMICs is being funded by The Bill & Melinda Gates Foundation (section 4). The second strategy is targeted towards vulnerable children, adolescents and adult populations at risk of *K. pneumoniae* disease such as those with an anticipated prolonged hospital stay or residents of long-term acute care facilities, with chronic obstructive airway disease, risk of surgical site infections, device-associated infections, immunocompromised, hematological or other malignancy. Combating Antibiotic Resistant Bacteria Biopharmaceutical Accelerator (CARB-X) is funding the development of a *K. pneumoniae* vaccine for use in adults and neonates (section 4).

Maternal immunization targeted for administration in the second or third trimester of pregnancy, to protect the mother, fetus (from adverse outcomes like stillbirth) and young infant has been used to reduce the risk of tetanus, pertussis, influenza, and COVID-19 during early infancy. The WHO recommends vaccination of pregnant women against tetanus, influenza, Covid-19 and pertussis. Recently, a maternal RSV vaccine has been approved by the US FDA and a GBS vaccine is entering phase-III trials. The GBS vaccines may achieve licensure benchmarked on a safety profile and thresholds associated with risk reduction probability of disease [79]. Similarly, studies are underway to determine serological anti-K and anti-O IgG thresholds associated with risk reduction of serotype-specific *K. pneumoniae* invasive disease.

3. *Klebsiella pneumoniae* and its consideration as a public health priority by global, regional or country stakeholders

K. pneumoniae causes community- and healthcare-associated infections in children and adults. *K. pneumoniae* was the second leading pathogen of an estimated 1.27 million (95 % UI: 0.91–1.71) deaths attributable to bacterial AMR globally in 2019 [2]. The major burden of invasive *K. pneumoniae* mortality is in neonates and infants. In sub-Saharan Africa and South Asia, *K. pneumoniae* was reported as the leading cause of neonatal sepsis (24.9 %), and infectious cause of neonatal mortality (45.4 %) [17,21]. This rising concern of multidrug resistant hospital-acquired infections and adverse neonatal outcome makes it a public health priority. Table 3 provides an overview of non-commercial stakeholders’ interest and potential demand.

4. Existing guidance on preferences/preferred product attributes for vaccines against *Klebsiella pneumoniae*

The preferred product characteristics (PPC) for *K. pneumoniae* vaccines have not yet been developed by the World Health Organization (WHO). At the time of publication, the Bill & Melinda Gates Foundation (BMGF), which is funding the development of a vaccine targeted at pregnant women, has developed an intervention target product profile (ITPP) for a *K. pneumoniae* vaccine intended to protect neonates in LMICs as detailed in Table 4.1.
CARB-X is also funding the development of vaccines against \textit{K. pneumoniae}, including carbapenem-resistant strains, to protect adults as well as neonates. It has also shared its guidance on a TPP for a vaccine intended for use in adults in both LMICs and HICs (Table 4.2). The goal is to create a single product that can prevent neonatal sepsis in LMICs by immunizing mothers, as well as to prevent invasive \textit{K. pneumoniae} infections in adults in both HICs and LMICs. The HIC market would help attract investment for the product.

5. Vaccine development

5.1. Probability of technical and regulatory success (PTRS)

For licensure of a \textit{K. pneumoniae} vaccine administered to pregnant women, a significant reduction in culture-confirmed invasive \textit{K. pneumoniae} disease in the neonate or young infant of vaccinated women compared to unvaccinated women would need to be demonstrated. If a serologic correlate or surrogate of protection could be demonstrated through sero-observational studies, consideration may be given to licensure of \textit{K. pneumoniae} vaccines on safety and immunological endpoint alone, followed by phase-IV vaccine effectiveness studies (Table 5).

A reduction in blood culture-confirmed \textit{K. pneumoniae} bacteremia would need to be demonstrated in vulnerable children, adolescents and adult populations at risk of \textit{K. pneumoniae} disease. Another potential endpoint may be vaccine efficacy against colonization (primarily gastrointestinal) among either hospitalized patients or in nursing homes, if this is demonstrated to be a mechanism through which the vaccines work.

5.2. Overview of the vaccine candidates in the clinical pipeline

Table 6 summarizes the paucity of \textit{K. pneumoniae} vaccines in the clinical pipeline. KlebVax and the K2, K3, K10 and K55 mix are no longer in active clinical development. The Kleb4V which includes O-antigens, has not been targeted for maternal immunization to protect neonates and young infants. Notably, CARB-X and the BMGF are funding the development of vaccines against \textit{K. pneumoniae} to protect adults and neonates. There is a multi-pathogen licensed vaccine that contains a strain of Klebsiella although it is not in widespread use and its main purpose is in the prevention of recurrent urinary tract infection in adults, and the included evidence suggests that it only protects against the strain that is included in the vaccine rather than wider cross-protection [87,88].

6. Health impact of a vaccine on burden of disease and transmission

A \textit{K. pneumoniae} vaccine administered to pregnant women to protect neonates from invasive \textit{K. pneumoniae} disease could reduce neonatal sepsis in LMICs and HICs significantly. Bayesian modelling of data from 3 global studies in 18 mainly LMICs (2,330 neonates who died with sepsis), from 2016 to 2020 was used to estimate the number of \textit{K. pneumoniae} cases that would be averted if a vaccine with 70 % efficacy was given to pregnant women [4]. Globally, a maternal \textit{K. pneumoniae} vaccine would avert almost 400,000 (Credible Interval [CI]: 334,523—485,442) neonatal sepsis cases annually, and 80,000 (CI: 18,084—189,040) neonatal deaths (Table 7).
6.1. Summary of research gaps in modelling health impact on disease burden and transmission

- Estimating the cost and impact that a vaccine could have on reducing antibiotic use and AMR, both in *K. pneumoniae* and in other bacteria.
- Estimating the benefit of a vaccine in reducing outbreaks in hospitals and the community, and hence alleviating the burden on healthcare systems.
- Accurate measurement of the herd (community) protection that different vaccination strategies could have.

7. Social and/or economic impact of a vaccine

Even though there is evidence to suggest potential utility gains through *K. pneumoniae* vaccination reducing drug resistant infections (~4 million DALYs attributable with AMR could have been averted globally), the implications of such illnesses on healthcare costs, productivity and economic growth are still largely unknown [93]. This highlights an important gap in the literature that needs to be filled by both empirical studies and modelling.

K. pneumoniae infections are associated with a substantial impact on healthcare resources, particularly around opportunistic nosocomial infections. These infections increase the overall cost of hospital procedures (e.g., by requiring both prophylactic and therapeutic antibiotic use), and may lengthen patients’ hospital stay.

AMR *K. pneumoniae* infections impose high costs. The immediate impact is to elevate the costs of treatment, by necessitating the use of more expensive antibiotics, increased hospital stay and increased risk of expensive procedures such as intensive care unit admissions. In studies conducted in Israel, Italy, USA, and Germany, drug-resistant infections had relatively high average length of stay [94–98]. Whilst the incremental impact on length of stay of AMR, namely comparing third-
Table 4.2

Summary of target product profile for
Klebsiella pneumoniae vaccines (from CARB-X) for adults in LMICs and HICs.

<table>
<thead>
<tr>
<th>Product attribute</th>
<th>Minimal characteristic, if described</th>
<th>Preferential characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indication</td>
<td>Prevention of invasive infections due to circulating K. pneumoniae strains in hospitals or communities.</td>
<td>Prevention of invasive infections and pneumonia due to circulating K. pneumoniae strains in hospitals or communities.</td>
</tr>
<tr>
<td>Product</td>
<td>No preferred modality.</td>
<td>No preferred modality.</td>
</tr>
<tr>
<td>Target population(s)</td>
<td>Adolescents and adults at high risk of infection, e.g., affected by COAD, risk of surgical site infections, device-associated infections, residents of long-term acute care facilities etc.</td>
<td>Older adults (>65 years of age).</td>
</tr>
<tr>
<td>Target Countries</td>
<td>HICs and LMICs.</td>
<td>HICs and LMICs.</td>
</tr>
<tr>
<td>Outcome measure(s) and target efficacy</td>
<td>>60 % reduction in blood culture-confirmed K. pneumoniae bacteremia; >80 % reduction of antibiotic-resistant K. pneumoniae.</td>
<td>>80 % reduction in blood culture-confirmed K. pneumoniae bacteremia; >90 % reduction of antibiotic-resistant K. pneumoniae.</td>
</tr>
<tr>
<td>Duration of protection</td>
<td>≥ 2 years.</td>
<td>≥ 5 years.</td>
</tr>
<tr>
<td>Safety profile</td>
<td>At least similar to licensed injectable vaccines for the age group.</td>
<td>At least similar to licensed injectable vaccines for the age group.</td>
</tr>
<tr>
<td>Vaccine presentation</td>
<td>Single dose vial, liquid formulation.</td>
<td>Single dose vial, liquid formulation.</td>
</tr>
<tr>
<td>Number of doses and schedule</td>
<td>3 single-dose injections, 3–4 weeks apart.</td>
<td>1 single-dose injection.</td>
</tr>
<tr>
<td>Vaccine volume</td>
<td>0.5 ml.</td>
<td>0.5 ml.</td>
</tr>
<tr>
<td>Route of administration</td>
<td>IM</td>
<td>IM</td>
</tr>
<tr>
<td>Co-administration with other vaccines</td>
<td>None</td>
<td>Can be safely administered with routine seasonal vaccines for the age group such as influenza or pneumococcus.</td>
</tr>
<tr>
<td>Product stability and storage</td>
<td>Minimum shelf life of 2 years at 2—8 °C.</td>
<td>Minimum shelf life of 3 years at 2—8 °C.</td>
</tr>
<tr>
<td>Cold chain volume required</td>
<td>Consistent with VPPAG Guidance.</td>
<td>Consistent with VPPAG Guidance.</td>
</tr>
<tr>
<td>Product Registration Path</td>
<td>Approval from at least one functional NRA</td>
<td>Approval from at least one functional NRA, WHO prequalification, local marketing authorization in priority markets.</td>
</tr>
<tr>
<td>Manufacturing Capabilities</td>
<td>Sufficient to meet demand from all Gavi and LMICs countries.</td>
<td></td>
</tr>
<tr>
<td>Special Populations</td>
<td>HIV + population.</td>
<td></td>
</tr>
<tr>
<td>Target Procurement Price</td>
<td><$2 per dose.</td>
<td></td>
</tr>
</tbody>
</table>

COPD – chronic obstructive pulmonary disease; IM – intramuscular; HIC – high-income countries; LMICs – low- and middle-income countries; NRA – national regulatory authorities; VPPAG - Vaccine Presentation and Packaging Advisory Group; WHO –World Health Organization.

generation cephalosporins and carbapenem resistant infections to their susceptible counterparts, appears to be significant, the impacts on hospital costs from payer/provider-perspectives are less conclusive [95,99–103]. For example, a study in the USA found community-onset AMR *K. pneumoniae* to be associated with an excess of $11,800 (95 % CI: -$10,500 to $34,200), with hospital-onset equivalents costing an excess of $13,200 (95 % CI: -$10,500 to $34,200), with the highest cost burden was incurred during the period of infection [104]. A study in Hong Kong found similar insights, with infection-related cost, though on average higher ($16,026 vs $11,602) was found to be insignificant (p-value = 0.382) [105]. However, both studies cite retrospective nature and small sample sizes as limitations, so these conclusions could be subject to Type 2 errors.

As well as the potential incremental cost of treating endemic AMR *K. pneumoniae* in hospitals, there is the wider threat of outbreaks of drug-resistant *K. pneumoniae*. An ESBL-producing 4-month outbreak in 2001 in neonates within the USA was costed at $341,751, with the largest costs attributable to healthcare worker time in direct patient care (2,489 h, $146,331) [106]. Between July 2014 and October 2015, an outbreak of carbapenemase-producing *Enterobacteriaceae* in England cost £1.1 m (range £0.9–1.4 m), with around £312,000 of actual expenditure, and £822,000 of opportunity cost [107]. During October–December 2015, a multidrug-resistant, New Delhi-metallo-β-lactamase-positive *K. pneumoniae* strain in the Netherlands had an estimated economic impact of $804,263, with the highest costs associated with hospital bed closures [108].

Beyond the healthcare system, families and caregivers also bear a wider array of costs, ranging from emotional distress to lost wages by patients and their caregivers to out-of-pocket payments for hospitalization and drugs. A study conducted in Brazil of patients with carbapenamase-producing *K. pneumoniae* found that direct medical costs per patient were $4,135.15, with the vast majority of these costs due to antimicrobial therapies, particularly systemic antimicrobials. Notably, the highest cost burden was incurred during the period of infection [109]. Similarly, a study conducted in China found higher antibiotic and treatment costs among patients with carbapenem-resistant *Enterobacteriaceae* compared to those with susceptible strains [110].

The long-term consequences of AMR *K. pneumoniae* may be far more dire. If *K. pneumoniae* develops resistance to current last resort antibiotics and no new antibiotics are brought to market, then certain medical procedures may become perilous due to the risk of untreatable infection, potentially rendering them too hazardous to perform [111]. This phenomenon could result in a rise in the prevalence of long-term disability stemming from the inability to conduct surgical interventions for conditions that are not life-threatening in nature, and the inability to treat surgical site infections when they occur [112].

An effective vaccine would reduce this burden through multiple mechanisms. Firstly, vaccines may reduce the overall carriage of and incidence of *K. pneumoniae* infections, thereby mitigating the strain on healthcare facilities and resources. Reducing deaths attributable to *K. pneumoniae* (particularly for neonatal-sepsis) could also increase the
Table 5
Overview of parameters that inform scientific feasibility of developing an effective vaccine for LMICs public market use.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Issues and evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis/case ascertainment</td>
<td>Diagnosis is through positive culture from the usually sterile infected site (e.g. blood, CSF) [17,47]. In LMICs the ability to diagnose invasive disease is often limited by the blood culture sampling of babies suspected to have sepsis or meningitis where the microbiology laboratory technology is available to identify invasive K. pneumoniae disease. Investment in improved diagnostic technology is needed [82].</td>
</tr>
<tr>
<td>Biomarkers/Correlates of risk and/or protection</td>
<td>There is currently no immune surrogate or correlate for protection against invasive K. pneumoniae disease which could be used to infer protection or vaccine efficacy. Similarly, there are no established biomarkers. Work is ongoing to develop antibody binding (e.g. Luminex) and functional (e.g. serum bactericidal assay (SBA)/ opsonophagocytic killing (OPK)) assays, but these have yet to be standardized or correlated with protection [40].</td>
</tr>
<tr>
<td>Sero-epidemiological data</td>
<td>There are no sero-epidemiological studies on infection induced immunity following K. pneumoniae infection. More detailed investigation of K- and O-serotypes prevalent in different geographic areas are needed to inform potential vaccine formulation using these antigen targets [17,45–47,83]. In addition, there are highly conserved epitopes in the Gram-negative bacterial LPS core that may be potential vaccine targets.</td>
</tr>
<tr>
<td>Clinical endpoints</td>
<td>For K. pneumoniae vaccine studies, a clinical endpoint would be the prevention of invasive K. pneumoniae disease in the vaccinated group compared with a control group. Another secondary endpoint could be reduction of gastrointestinal colonization among either hospitalized neonates or in adult nursing homes, but further research is needed. Other secondary or exploratory endpoints include the prevention of all-cause neonatal sepsis, duration of hospitalization and all-cause mortality in the vaccinated group compared with a control group.</td>
</tr>
<tr>
<td>Controlled Human Infection Model (CHIM)</td>
<td>There are currently no human infection models. Human infection models depend on having a challenge strain that can induce clinical manifestations of infection without posing a threat to the human subject. While this has been achieved for some organisms, no such model has been established for an opportunistic pathogen and it is expected to be very challenging for K. pneumoniae.</td>
</tr>
<tr>
<td>Opportunity for innovative clinical trial designs</td>
<td>There is limited opportunity for innovative K. pneumoniae clinical trial designs. Large multicenter studies will be required for a reduction of invasive disease as an endpoint, particularly in settings with a low burden of disease. Sero-epidemiological studies are underway to establish an immune surrogate or correlate for protection against invasive K. pneumoniae disease. Unlike for GBS, these studies however need to be cognizant of the challenges in establishing a correlate for protection against invasive K. pneumoniae disease; for example, the data analysis will need to factor the multiple potential confounders in the control group, and stratify by prematurity as a large proportion of K. pneumoniae hospital-acquired cases occur in preterm neonates.</td>
</tr>
<tr>
<td>Regulatory approach(es), including potential</td>
<td>The goal of a K. pneumoniae vaccine would be (i) the prevention of invasive K. pneumoniae disease in neonates by targeted vaccination of pregnant women and (ii) the prevention of invasive K. pneumoniae disease targeted at vulnerable populations at risk of K. pneumoniae and/or the elderly. Licensure from at least one functional NRA, followed by WHO Strategic Group of Experts on Immunization (SAGE) adoption and prequalification for Gavi markets. This will be dependent on indication and selected priority markets.</td>
</tr>
<tr>
<td>Accelerated approval strategies</td>
<td>In the absence of data demonstrating a serologic correlate or a surrogate of protection, K. pneumoniae vaccines are unlikely to be approved based on safety and immunogenicity data alone. There are no CHIMs. Animal survival challenge model studies will need to be undertaken. Furthermore, sero-epidemiological studies measuring quantitative and OP/ SBA antibody thresholds following natural infection will need to be established.</td>
</tr>
<tr>
<td>Potential for combination with other vaccines</td>
<td>A combination strategy is definitely feasible, especially with a maternal vaccination strategy, combining with different pathogens causing neonatal sepsis, combining with other vaccines recommended in pregnancy (e.g. Tdap) or combining with other nosocomial infections (e.g. in the elderly). A 24-valent K. pneumoniae CPS vaccine (Klebvax®), administered concurrently with an 8-valent Pseudomonas vaccine, was well tolerated in studies from the 1990 s. Nevertheless, Klebvax was not introduced into routine clinical use (See Table 6). Combination vaccines which target additional ESKAPE pathogens is appealing for reducing the risks of invasive disease in neonates and high-risk adult groups. The safety of vaccine combinations must be determined. Also, the timing of co-administered vaccines must be considered, especially given the potential interaction with routine childhood immunization.</td>
</tr>
<tr>
<td>Feasibility of meeting presentation and stability requirements</td>
<td>Stable experimental K. pneumoniae vaccines have been developed, but to date these have required cold chains which are difficult in LMICs. A single dose vial is preferred to minimize wastage, but consideration needs to be given in the LMICs. Stability requirements are consistent with Vaccine Presentation and Packaging Advisory Group (VPPAG) guidance.</td>
</tr>
<tr>
<td>Vaccine platform</td>
<td>There are many K. pneumoniae vaccine platforms in development [84,85]. CPS (K-antigen)/LPS (O-antigen)-based vaccines are in preclinical development using well-established technologies, including bioconjugation, and the formation of nanocongruents; all are feasible for large scale manufacturing, tech transfer and adaptable to alternative strains if needed. Complex multi-valent vaccines may be required for sufficient coverage of dominant circulating strains of K. pneumoniae. Use of technologies enabling low cost of goods is preferable. Various conjugation strategies or outer membrane vesicle (OMV) vaccines may be amenable to scale-up and adaptable to new strains. OMV and live attenuated K. pneumoniae vaccines would need to ensure detoxification of the LPS to reduce reactogenicity. The use of live attenuated vaccines is unlikely to be an option for vaccination of pregnant women. Some technologies, such as semi-synthetic oligosaccharide synthesis, would be difficult to produce at large scale. Vaccines directed at the highly conserved Gram-negative bacillus LPS core may also protect against preclinical K. pneumoniae infection.</td>
</tr>
<tr>
<td>Large scale Manufacturer capacity / interest</td>
<td>GlaxoSmithKline (LimmaTech Biologicals AG) has tested a tetravalent bioconjugate vaccine including O-antigen-poly saccharides in a Phase 1 clinical trial (NCT04959344). Inventrise is working on combination multivalent K and O-antigen based conjugate vaccine against K. pneumoniae. GlaxoSmithKline is developing a multi-valent K. pneumoniae vaccine through Multiple Antigen Presentation System (MAPS) technology acquired by Affinivax. There may be developing interest from other multi-national companies, but this would depend on the availability of both immunogenicity and functional activity of the proposed vaccine. Many vaccines in development have not published functional data.</td>
</tr>
</tbody>
</table>
labor pool through increased working-life-years available, reducing associated productivity losses [4]. Additionally, by reducing infection incidence, vaccines would reduce the need to use higher-tier antibiotics, consequently diminishing the selection pressure on *K. pneumoniae* and potentially delaying the development of AMR. Furthermore, reducing antibiotic usage through vaccination could potentially have benefits on other pathogens, as the use of non-specific antibiotics might also decrease, contributing to a decline in resistance among other microorganisms [113].

8. Policy considerations and financing

The development and deployment of a vaccine against *K. pneumoniae* presents critical policy considerations and financing challenges, particularly in LMICs and HICs. Given the substantial burden of disease associated with Klebsiella infections in both LMICs and HICs, equitable access to the vaccine is imperative. In Gavi-eligible countries, financial support from Gavi will be pivotal in ensuring access to the vaccine. However, in non-Gavi markets, policymakers must carefully assess the local context, considering factors such as disease prevalence, potential impact, and cost-effectiveness when deciding on the introduction of Klebsiella immunization. Furthermore, to secure funding from Gavi, the vaccine must meet the rigorous prequalification standards set by the WHO, and a policy decision made by the WHO SAGE is essential. These interlinked considerations and financing mechanisms will play a pivotal role in the global effort to combat *K. pneumoniae* infections (Table 8).

9. Access and implementation feasibility

The feasibility and implementation of *K. pneumoniae* vaccines are examined in this chapter, with a focus on maternal immunization to prevent neonatal and infant sepsis, as well as immunization for vulnerable children, adolescents and adult populations at risk of *K. pneumoniae* disease. It is suggested that the potential integration of these vaccines into existing delivery systems shows moderate promise, particularly when utilizing platforms established for other vaccinations (Table 9). The identification of a viable target population and the commercial viability are moderately attractive, with a higher potential noted in high-income countries due to the rise of AMR. The clarity of the licensure path and policy decisions is presented as variable, necessitating novel strategies for vaccine efficacy assessment. Financing mechanisms and the ease of uptake are discussed, indicating a moderate expectation of interest from global funders and a high likelihood of incorporation into clinical guidelines (Table 9).

10. Conclusion

The global threat posed by invasive *K. pneumoniae* disease, particularly hospital-acquired multidrug resistant strains affecting neonates and young infants, and vulnerable children, adolescents and adult populations at risk of *K. pneumoniae* disease warrant immediate vaccination strategies. In this VVP for *K. pneumoniae*, we described the potential public health and economic value of vaccines targeted against *K. pneumoniae*. We highlight the limited vaccine pipeline and call on funders to develop vaccines targeted against *K. pneumoniae*.

Based on limited surveillance estimates, a *K. pneumoniae* vaccine with 70% efficacy administered to pregnant women to protect neonates would avert almost 400,000 neonatal sepsis cases yearly, and 80,000 neonatal deaths. More data from LMICs and a full economic evaluation of the potential benefit of a vaccine for vulnerable children, adolescents and adult populations at risk of *K. pneumoniae* disease are needed, including healthcare burden and societal costs, and accounting for specific costs related to AMR infections, and reducing outbreaks in hospitals.

Importantly, the discussion with regulators about vaccine licensure based on vaccine efficacy against a laboratory endpoint of culture-confirmed *K. pneumoniae* bacteraemia or on established sero-correlates of protection is warranted. Transplacental and breast milk transfer of *K. pneumoniae* antigen-specific antibody from pregnant women to the fetus and newborn needs to be evaluated.

Equitable access to the vaccine is also imperative given that the burden of invasive *K. pneumoniae* disease is high in both LMICs and HICs. The development and deployment of a vaccine against *K. pneumoniae* presents critical policy considerations and financing challenges, particularly in LMICs. Furthermore, to secure funding from Gavi, the vaccine must meet the rigorous prequalification standards set by the WHO, and a policy decision made by the WHO SAGE is essential.

Funding: This work was supported by the funding from Bill & Melinda Gates Foundation (INV-00518) to the World Health Organization.

CRediT authorship contribution statement

Ziyaad Dangor: Writing – review & editing, Writing – original draft, Project administration. Nicole Benson: Writing – review & editing, Writing – original draft. James A. Berkley: Writing – review & editing, Writing – original draft. Julia Bielicki: Writing – review & editing, Writing – original draft. Merijn W. Bijsma: Writing – review & editing, Writing – original draft. Jonathan Broad: Writing – review & editing.
Table 7

Overview of modelling studies that measure health impact on disease burden and transmission.

<table>
<thead>
<tr>
<th>Policy question</th>
<th>Assessment method/measure</th>
<th>Assumptions</th>
<th>Outcomes/interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the impact of a K. pneumoniae vaccine given to pregnant mothers on health outcomes in neonates and infants? [4]</td>
<td>A Bayesian mixture-modelling framework was developed to estimate the effects of a hypothetical K. pneumoniae maternal vaccine with 70 % efficacy on neonatal sepsis and mortality. The model was parameterized using data from 3 global studies of neonatal sepsis and/or mortality, involving 2,530 neonates who died with sepsis, from 2016 to 2020, undertaken in 18 mainly LMICs across all WHO regions (Ethiopia, Kenya, Mali, Mozambique, Nigeria, Rwanda, Sierra Leone, South Africa, Uganda, Brazil, Italy, Greece, Pakistan, Bangladesh, India, Thailand, China, and Vietnam). Within these studies, 26.95 % of fatal neonatal sepsis cases were culture-positive for K. pneumoniae. To predict the future number of drug-resistant cases and deaths that could be averted by vaccination, 9,079 K. pneumoniae genomes from human isolates gathered globally from 2001 to 2020 were analyzed to quantify the temporal rate of acquisition of AMR genes in K. pneumoniae isolates.</td>
<td>Incidence rate: The model assumes a probability, ps,l, that K. pneumoniae was the cause of death for a neonate who died from neonatal sepsis in each location (l) and for each study (s). Case Fatality Risk (CFR): The model estimates the CFR for K. pneumoniae sepsis using data from the BARNARDS study. Direct vaccine efficacy rate: The model assumes a 70 % efficacy rate for the maternal K. pneumoniae vaccine, based on a conjugate vaccine candidate targeting the 15 most common K. pneumoniae capsular serotypes that cause invasive infections in neonates. Herd effects: The model does not explicitly mention herd effects. Coverage rate: The model assumes an effective coverage level equal to that of the maternal tetanus vaccine (median: 90 % range: 58.5 % to 100 % of pregnant women immunized) for the maternal K. pneumoniae vaccine. Vaccine duration and frequency: The model does not explicitly mention vaccine duration or frequency; it assumes a one-time administration of the maternal K. pneumoniae vaccine. Target populations: The model focuses on neonates who died with sepsis in 18 mainly LMICs across all WHO regions. The target population includes pregnant women for vaccine coverage estimates. Time period: The model uses data from studies conducted between 2016 and 2020 for neonatal sepsis surveillance. For K. pneumoniae genome analysis, data from 2001 to 2020 are used to estimate future benefits. Granularity (country/region): The model analyzes data from 18 mainly LMICs across all WHO regions and includes 68 countries for K. pneumoniae genome analysis. The results are extrapolated to estimate global figures.</td>
<td>Resistance rates to carbapenems are observed to be increasing most rapidly, and meropenem-resistant K. pneumoniae is responsible for 22.43 % of neonatal sepsis deaths (95th percentile CI: 5.24—41.42). Globally, it is estimated that maternal vaccination could avert 80,258 neonatal deaths (CI: 18,084—189,040) and 399,015 neonatal sepsis cases yearly worldwide (CI: 334,523—485,442), which accounts for more than 3.40 % of all neonatal deaths (CI: 0.75—8.01). The largest relative benefits are observed in Africa (Sierra Leone, Mali, Niger) and South East Asia (Bangladesh), where vaccination could avert over 6 % of all neonatal deaths. However, it should be noted that the modelling only considers country-level trends in K. pneumoniae neonatal sepsis deaths and is unable to account for within-country variability in incidence, which may influence the projected burden of sepsis. It also does not consider any potential benefit that vaccination may have beyond the vaccines, in reducing hospital and community transmission, and hence may underestimate vaccine benefit.</td>
</tr>
<tr>
<td>What is the impact of a K. pneumoniae vaccine given to pregnant mothers on prevention of blood stream infections in neonates and infants? [93]</td>
<td>The model is a static proportional impact model to estimate the vaccination impact on 15 bacterial pathogens in terms of reduction in age-specific AMR burden estimates for 2019 from the Global Research on Antimicrobial Resistance project in direct proportion to efficacy, coverage, target population for protection, and duration of protection of existing and future vaccines.</td>
<td>Incidence rate: The model uses bacterial AMR burden estimates from the GRAM project, which provides data for age-specific deaths and DALYs associated with and attributable to AMR by pathogen, infectious syndrome, and region for 2019. CFR: The model does not use CFR in the estimation process. Direct vaccine efficacy rate: 70 % Herd effects: not included in the modelling. Coverage rate: 70 % Vaccine duration: 6 months. Target populations: immunization of mothers to protect children between 0 and 6 months old Granularity (country/region): The model estimates vaccine-avertable deaths and DALYs attributable to and associated with AMR by region, infectious syndrome, and pathogen for two scenarios - baseline scenario and high-potential scenario.</td>
<td>27,333 (95th UI: 22,045—34,905) deaths associated with AMR could be averted by such a vaccine.</td>
</tr>
<tr>
<td>What is the impact of a K. pneumoniae vaccine in preventing all disease outcomes given to children and the elderly? [4]</td>
<td>As above</td>
<td>Same as above except for: Vaccine duration: 5 years. Target populations: immunization of 6-week infants and 70 years elderly</td>
<td>64,484 (95 % UI: 58,747—72,028) of deaths associated with AMR could be averted by such a vaccine.</td>
</tr>
</tbody>
</table>
Table 7 (continued)

<table>
<thead>
<tr>
<th>Policy question</th>
<th>Assessment method/measure</th>
<th>Assumptions</th>
<th>Outcomes/interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the impact of a K. pneumoniae vaccine in preventing all disease outcomes given to all who are at risk of acquiring infection?</td>
<td>As above</td>
<td>Same as above except for: • Target populations: all age groups</td>
<td>321,242 (95 % UI: 308,878—335,698) of deaths associated with AMR could be averted by such vaccine</td>
</tr>
</tbody>
</table>

Table 8
Overview of expectations of evidence that are likely to be required to support a global / regional / national policy recommendation, or financing.

<table>
<thead>
<tr>
<th>Parameter for policy/financing consideration</th>
<th>Assumptions</th>
<th>Guidance/ reports available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence for vaccine efficacy in LMICs is available</td>
<td>Clinical trials must provide evidence of efficacy and safety in the LMICs.</td>
<td>This may be required by SAGE for a policy recommendation (has been required for some other vaccines), and licensure in some countries</td>
</tr>
<tr>
<td>WHO policy recommendation through SAGE</td>
<td>SAGE recommends the wide use of a maternal vaccine.</td>
<td>https://www.who.int/groups/strategic-advisory-group-of-experts-on-immunization/about</td>
</tr>
<tr>
<td>Prequalification (PQ) of maternal vaccines by WHO</td>
<td>Manufacturers choose to submit package to WHO for PQ. Vaccines receive PQ.</td>
<td>https://www.who.int/publications/i/item/WHO-IVB-14.10</td>
</tr>
<tr>
<td>National (or at least regional) Klebsiella disease burden data</td>
<td>National policy for Klebsiella vaccines will be based on evidence of disease burden (including health care utilization).</td>
<td>https://www.who.int/publications/i/item/9789241506892</td>
</tr>
<tr>
<td>Favorable cost-effectiveness</td>
<td>Countries will more likely take up products if cost effectiveness analyses show favorable value for money.</td>
<td>https://www.who.int/publications/i/item/9789241506892</td>
</tr>
<tr>
<td>Product price acceptable to Gavi investment case for use in Gavi eligible countries</td>
<td>LICs that are Gavi eligible will likely apply for use of Klebsiella vaccines only if Gavi support is available.</td>
<td>https://www.gavi.org/our-alliance/strategy/vaccine-investment-strategy-2024</td>
</tr>
<tr>
<td>Feasibility of integration into existing delivery platforms (i.e., antenatal care, postnatal check-ups, routine EPI visits)</td>
<td>Integration into existing platforms will favor uptake of products.</td>
<td></td>
</tr>
<tr>
<td>Impact of the vaccine on antibiotic use and AMR</td>
<td>The impact of Klebsiella vaccine on AMR has been modelled but data collected during clinical trials, post-licensure and surveillance studies must confirm the modelling findings [4,93].</td>
<td></td>
</tr>
</tbody>
</table>

Writing – original draft. Ed T. Buurman: Alan Cross: Writing – review & editing, Writing – original draft. Erin M. Duffy: Writing – review & editing, Writing – original draft. Kathryn E. Holt: Writing – review & editing, Writing – original draft. Pui-Ying Iroh Tam: Writing – review & editing, Writing – original draft. Mark Jit: Writing – review & editing, Writing – original draft. Konstantinos Karampatsas: Writing – review & editing, Writing – original draft. Michael Katwere: Writing – review & editing, Writing – original draft. Gaurav Kwatra: Writing – review & editing, Writing – original draft. Ramanan Laxminarayan: Writing – review & editing, Writing – original draft. Michael Katwere: Writing – review & editing, Writing – original draft. Robert Mboizi: Writing – review & editing, Writing – original draft. Francesca Micoli: Writing – review & editing, Writing – original draft. Catrin E. Moore: Writing – review & editing, Writing – original draft. Eve Nakabembe: Writing – review & editing, Writing – original draft. Nichola R. Naylor: Writing – review & editing, Writing – original draft. Seamus O’Brien: Writing – review & editing, Writing – original draft. Courtney Olwagen: Writing – review & editing, Writing – original draft. Simon Landry: Writing – review & editing, Writing – original draft. Sharon M. Tennant: Writing – review & editing, Writing – original draft. Mateusz Hasso-Agopsowicz: Writing – review & editing, Writing – original draft. Shabir A. Madhi: Writing – review & editing, Writing – original draft, Project administration, Conceptualization.

Declaration of competing interest
The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Ziyaad Dangor reports financial support was provided by Bill & Melinda Gates Foundation. Ziyaad Dangor reports financial support was provided by World Health Organization. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability
No data was used for the research described in the article.
Table 9
Overview of considerations that are likely to be required to approve, recommend, and deliver a vaccine where needed.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
<th>Approval Considerations</th>
<th>Delivery Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possibility of implementation within existing delivery systems</td>
<td>MODERATE Considering the feasibility of delivering a vaccine against K. pneumoniae to pregnant women in LICs, the outlook appears moderate. This is due to the potential to leverage existing platforms used for delivering the tetanus vaccine to pregnant women. Moreover, the inclusion of GBS and RSV vaccines could further enhance the maternal vaccination platform, making it a viable option for implementing the K. pneumoniae vaccine and improving maternal and neonatal health. A key consideration, however, is the high burden of hospital acquired K. pneumonia in neonates. Therefore, vaccination would be required early in the second trimester and dependent on efficient transplacental antibody to protect the preterm neonate.</td>
<td>LOW Delivering a vaccine to those who are at high risk of infection is challenging. Such an immunization program would require establishing appropriate point of contacts with adolescents and adults. This would be particularly challenging in LICs.</td>
<td></td>
</tr>
<tr>
<td>Commercial attractiveness</td>
<td>MODERATE There is a promising target population in all markets. However, defining the target population appropriately would necessitate surveillance efforts. Furthermore, the vaccine holds potential for Gavi support if it proves to be cost-effective and effectively averts a significant burden of disease in LICs. This support from Gavi could significantly enhance the commercial prospects and accessibility of the vaccine in these regions.</td>
<td>HIGH There is a potentially significant market in HICs. With the increase in AMR and the likelihood that any newly developed antibiotic will have a relatively short half-life, immunization may be an attractive complement to current approaches.</td>
<td></td>
</tr>
<tr>
<td>Clarity of licensure and policy decision pathway</td>
<td>MEDIUM Should maternal immunization be shown to be safe and able to decrease the incidence of neonatal sepsis and to reduce neonatal mortality, decisions on licensure and policy should be relatively straightforward. Based on the high incidence of invasive K. pneumoniae disease in most LMICs, a phase 3 efficacy trial with a clinical endpoint of disease prevention would need to be undertaken in various settings, including power to address the burden in preterm neonates</td>
<td>LOW Given the difficulty of performing a phase 3 trial for any vaccine targeting healthcare-associated infections, alternative strategies for assessing the efficacy of these vaccines will need to be developed in conjunction with licensing agencies. There might be a need for considering correlates of protection as a proxy for efficacy in phase 3 trials, while effectiveness will be evaluated post-vaccine licensure. Sero-epidemiological studies to establish an immune surrogate or correlate for protection against invasive K. pneumoniae disease will need to address the potential confounders in the control group.</td>
<td></td>
</tr>
<tr>
<td>Expected financing mechanism</td>
<td>MODERATE Potential interest from global funders, depending on public health impact data. There is interest from national procurement agencies.</td>
<td>HIGH As the vaccine market would predominantly be concentrated in HICs, the decision to introduce and finance a vaccine will depend on the standardized processes to evaluate and introduce vaccines, often supported by National Immunization Technical Advisory Groups (NITAGs).</td>
<td></td>
</tr>
<tr>
<td>Ease of uptake</td>
<td>MODERATE Well-defined target population with likelihood of high acceptability, but possible difficulties in infrastructure for vaccination such as timely identification and immunization of pregnant women during early second trimester.</td>
<td>HIGH An effective K. pneumoniae vaccine could be incorporated into multiple clinical guidelines and implemented within the existing healthcare delivery systems. The increasing prevalence of AMR could further increase the ease of vaccine uptake.</td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgement

This supplement was sponsored by the World Health Organization’s Immunization, Vaccines, and Biologicals unit. The authors alone are responsible for the views expressed in each article and they do not necessarily represent the views, decisions, or policies of the institutions with which they are affiliated.

References

